Ontario Ministry of Agriculture, Food and Rural Affairs

Greenhouse Vegetable Production in Northern Ontario

Fadi Al-Daoud, PhD

Greenhouse Vegetable Specialist

E-mail: fadi.al-daoud@ontario.ca

Phone: (519) 551-6703

Blog: <u>https://mediu</u>m.com/ongreenhousevegetables

LinkedIn: https://www.linkedin.com/in/fadi-al-daoud/

Presentation Objective and Outline

Objective: To provide an overview of greenhouse (GH) vegetable production in northern Ontario, including key opportunities and challenges.

Outline:

- ➤ GH sector in Ontario
- Production system
- Examples of northern vegetable GH

What is GH agriculture?

- A form of controlled environment agriculture (CEA) where crops are protected from environmental hazards using a structure (a.k.a. covered agriculture)
- Greater control over the growing environment than field agriculture
- Extended growing season
- Greater production per acre than field agriculture

What do GH grow?

- Vegetables: the big three (tomatoes, peppers, and cucumbers)
- Some fruits (strawberries)
- Flowers and Cannabis

Ontario Field vs. GH vegetable production (2019)

Ontario Field vs. GH vegetable production (2019)

Ontario GH sector overview (2019)

- Over \$1 billion (CAN) farm gate value
 - Tomato (\$376 million)
 - Cucumbers (\$339 million)
 - Peppers (\$301 million)
- Over 3000 acres and growing
 - Tomato (1126 acres)
 - Peppers (986 acres)
 - Cucumbers (909 acres)
- Over 1 billion pounds of food
 - Cucumbers (660 million pounds)
 - Tomato (408 million pounds)
 - Peppers (219 million pounds)

Ontario GH sector overview (2019)

Highest concentration of GH in North America is in southwestern Ontario (Leamington and Kingsville in Windsor-Essex)

Ontario GH sector overview (2019)

Highest concentration of GH in North America is in southwestern Ontario (Leamington and Kingsville in Windsor-Essex)

Production System: what is GH agriculture?

- Structure:
 - Greenhouse
 - Hoop house / High tunnel
- Cover material:
 - Plastic
 - Glass

Greenhouse Canada

Rimol Greenhouse Systems

GH cover material affects light and heat

Cover Material	% light transmission (PAR)	Heating demand (% of glass)
Glass	high	high
Polyethylene	less	less
Acrylic	less	less

GH cover material affects light spectrum

Lanoue (2020)

OMAFRA publication 836

GH cover material affects light spectrum

Figure 1–6. Comparison of Light Transmission Between Glass and Double Polyethylene

OMAFRA publication 836

Production System: what is GH agriculture?

- > Cover material:
 - Plastic
 - Glass
- ➤ Growing media:
 - Soil
 - Soil-less

Growing Media

- ≻ Soil
- Hydroponics
 - Rockwool
 - Coir
 - Peat
- Nutrient film technique (NFT)
- Deep water culture (DWC)
- Aeroponics

Growing Media

System	Consistency and precision	Water use	Biological control of pests and disease	Requires aeration
Soil	No	Most	Yes	No
Hydroponics Rockwool Coir Peat 	Yes	Less	No	Yes
Nutrient film technique (NFT)	Yes	Less	No	Yes
Deep water culture (DWC)	Yes	Less	No	Yes
Aeroponics	Yes	Least	No	Yes

Production System: what is GH agriculture?

> Structure:

- Plastic
- Glass
- ➤ Growing media:
 - Soil
 - Soil-less
- > Water
 - Quantity
 - Quality

Water Quantity

Water Quality

Table 1-6. Classification of Water Quality

Class	Electrical Conductivity (mS/cm) ¹	Sodium (ppm)	Chloride (ppm)	Sulphate (ppm)
1	0.5	<30	<50	<100
2	0.5–1	30-60	50-100	100-200
3	1.0-1.5	60–90	100–150	200–300

Class 1: Good

Class 2: Should only be used for salt-sensitive crops if enough leaching is possible Class 3: Not recommended for salt-sensitive crops (cucumber)

Production System: what is GH agriculture?

- > Structure:
 - Plastic
 - Glass
- ➤ Growing media:
 - Soil
 - Soil-less
- > Water
 - Quantity
 - Quality
- > Nutrient solution:
 - Recirculated
 - Sterilization treatment

Recirculated nutrient solution sterilization techniques

- Sand filters
- Ultraviolet light (UV)
- Pasteurization
- Ozone

Recirculated nutrient solution sterilization techniques

System	Advantages	Disadvantages
Sand filter - physical filter	Inexpensive Allows biocontrol	Inconsistent
Pasteurization - heat	Consistent	Hot water in summer Kills beneficials
UV - light treatment	Consistent	Does not penetrate deep Not ideal for high turbidity solutions\ Kills beneficials
Ozone - O3 gas in water	Consistent Oxygenation of nutrient solution	Could damage crops is left in solution Kills beneficials

Production System: what is GH agriculture?

- > Structure:
 - Plastic
 - Glass
- ➤ Growing media:
 - Soil
 - Soil-less
- > Water
 - Quantity
 - Quality
- > Nutrient solution:
 - Recirculated
 - Sterilization treatment
- Environment control
 - Heat (natural gas)
 - CO2 enrichment
 - Humidity

GH Vegetable Growing Environment

Environment Factor	Range
Temperature (24 hr avg)	Lettuce, 17-18 oC Tomato, 19 oC Pepper, 19 oC Cucumber, 21 oC
Relative Humidity (RH)	70-85 %
CO2	800-1300 ppm

Energy curtains

Production System: what is GH agriculture?

Structure:

- Plastic
- Glass
- ➤ Growing media:
 - Soil
 - Soil-less

> Water

- Quantity
- Quality
- > Nutrient solution:
 - Recirculated
 - Sterilization treatment
- Environment control
 - Heat (natural gas)
 - CO2 enrichment
 - Humidity
- Supplemental lighting:
 - high pressure sodium (HPS)
- ²⁷ Light-emitting diodes (LED)

Supplemental Lighting

Light source	Advantages	Disadvantages
High Pressure Sodium (HPS)	 Producer familiarity Cost less than LED 	 High heat Low photosynthetic photon efficacy (PPE, 1.3-1.7 μmol J⁻¹) Fixed spectral quality (high in orange and yellow spectra)
Light-Emitting Diodes (LED)	 Low heat emission (~50% less than HPS) Small fixture size (inter- canopy lighting options) Higher PPE than HPS (2- 5 μmol J⁻¹) Adjustable spectral quality (regulate plant growth) 	 New and unknown Higher cost than HPS

Production System: what is GH agriculture?

- Integrated pest management (Cara McCreary, OMAFRA)
 - Better application of biological controls

Environment Control Systems

Production System: what do GH producers need?

Statistics Canada. Table 32-10-0245-01 2019 Greenhouse producers' operating expenses

GH adaptable to different communities

- Urban and sub-urban communities
- Traditional agriculture communities
- Northern and remote communities

GH in remote and northern communities

- Increase food security
- Training and employment opportunities
- > Examples:
 - Yukon Gardens (Whitehorse, Yukon)
 - Inuvik Community Greenhouse (Inuvik, Northwest Territories)
 - Green Iglu (Naujaat, Nunavut)

Yukon Gardens (Whitehorse, YT)

- > 0.7 acres (30 000 sq ft) hydroponic vegetable greenhouse built in 2018
- Trees, shrubs, annuals, perennials, cucumbers, tomatoes, peppers, lettuce
- Automated biomass boiler for heat (wood chips) and heat curtains (saves 45 % heat loss)
- Humidity control in winter is an issue because cannot open vents, dehumidifier
- Grow until mid-February with no lights, 10 month production
- Seeds from Netherlands, grow own seedlings, 1/3 of plants come from propagators in BC
- ➢ GH vegetables priced 5-15% more than imports, but more fresh

Greenhouse Canada

CBC

Inuvik Community Greenhouse (Inuvik, NT)

- Transformed old arena into a fully functioning greenhouse in 1998
- > 18 000 sq ft greenhouse grows leafy greens, squash, tomatoes, and flowers
- Only summer production

Inuvikgreenhouse.com

Green Iglu (Naujaat, NU)

- Growing North; U of Toronto and Ryerson U students
- Towers to grow leafy greens, soil boxes to grow root veg
- Reflector captures heat from sun and heat is stored in water tub
- 3-4 hours of sunlight a day is needed to maintain the correct temperature
- Re-circulates water
- Fully automated monitoring system
- Production 7 months per year

GH Education and Training

- University of Guelph Ridgetown Campus
- Niagara College
- Greenhouse Canada Magazine
- Canadian Greenhouse Conference
- > OMAFRA:
 - Greenhouse Vegetable Course
 - Publications
 - Blog
 - Webinars
 - Workshops

Greenhouse Vegetable Agriculture in Ontario

Fadi Al-Daoud, PhD Greenhouse Vegetable Specialist E-mail: fadi.al-daoud@ontario.ca Phone: (519) 551-6703 Blog: https://medium.com/ongreenhousevegetables LinkedIn: https://www.linkedin.com/in/fadi-al-daoud/ **OMAFRA's GH team: Cara McCreary (Greenhouse** Vegetable IPM Specialist) Andrew Wylie (Dr. Chevonne Dayboll on leave, Greenhouse Floriculture Specialist) Dr. Sarah Jandricic (Greenhouse Floriculture IPM Specialist) Jennifer Llewellyn (Nursery Crop Specialist)

